پرکامبرین
Precambrian
Detailed sedimentological and geochemical
investigations of Precambrian sedimentary rocks and the study of organic remains
have facilitated understanding of conditions on the ancient Earth.
Microorganisms are known to have been abundant in the early part of Earth
history. The metabolic activities of such organisms played a critical role in
the evolution of the atmosphere and oceans. There have been attempts to apply
the concepts of plate tectonics to Precambrian rocks. These diverse lines of
investigation have led to a great leap in understanding the early history of the
planet. See also: Plate tectonics
Subdivisions
Early attempts to subdivide the Precambrian
were mainly based on geological characteristics such as rock structure and
metamorphic grade. Meaningful subdivision of the Precambrian has become possible
only with the development of sophisticated techniques for deciphering the ages
of rocks. The Subcommission on Precambrian Stratigraphy of the International
Union of Geological Sciences (IUGS) has suggested a subdivision based on
specific time intervals (Fig. 1). Some have claimed that subdivisions of the
Precambrian should correspond to specific evolutionary changes that can be
observed in the rock record. Many of these changes occurred at widely different
times in different parts of the planet so that “arbitrary” time subdivisions are
somewhat artificial. To overcome some of these conceptual problems, a simple
subdivision using geons, which are time units of 100 million years' duration,
has been suggested (Fig. 1). The era names suggested by the IUGS have been
widely accepted, whereas the smaller subdivisions (equivalent to periods in
younger rocks) have not. Subdivision of the Precambrian has been contentious.
Most agree on names for major subdivisions, but the concept of rigidly
applicable global subdivisions based on arbitrary times poses philosophical
problems for some.
Fig.
1 Major subdivisions of geologic
time. The Precambrian comprises the Archaean and Proterozoic
eons.

Archean
Rocks of the Archean Eon (2.5–3.8 Ga) are
preserved as scattered small “nuclei” in shield areas on various continents. The
Canadian shield contains perhaps the biggest region of Archean rocks in the
world, comprising the
Fig.
2 Neoproterozoic pillow lavas from
Anglesey,

Ultramafic magnesium-rich lavas, known as
komatiites, are considered to have formed at high temperatures (about 3000°F or
1650°C). These unusual lavas have been interpreted to mean that the interior of
the Earth (mantle) was much hotter in the Archean than it is now. Geochemical
and other investigations of lavas preserved in greenstone belts have led to the
interpretation that they formed in a number of environments, analogous to
present-day ocean floors, oceanic and continental volcanic arcs, and rifts.
Many of the associated sedimentary rocks
are “immature” in nature, having formed by rapid erosion and deposition, from
volcanic and, in some cases, older continental crustal sources. Such sedimentary
rocks are commonly known as turbidites, formed as a result of gravity-controlled
deposition in relatively deep water. Relatively rare “supermature” sediments
formed in shallow-water environments as the result of extreme weathering. They
are composed almost entirely of quartz and are known as orthoquartzites. In
addition, iron-rich sediments formed by chemical precipitation from seawater
(Fig. 3). These sediments indicate the existence of liquid water on the Archean
Earth's surface and provide important clues concerning the nature of the ancient
atmosphere and oceans. See also:
Quartz; Sedimentary rocks; Turbidite
Fig.
3 Banded iron formation (BIF) from
the Archean of Finland. The light layers are silica-rich (chert), and the dark
layers consist of iron oxides. The highly contorted nature of many such iron
formations is due to early slump movements of these chemical sediments prior to
complete consolidation.

Many Archean shield areas also contain
terranes composed of highly metamorphosed rocks (high-grade gneiss terranes).
The origin of these gneissic terranes is controversial, but some may represent
subduction zones located at ancient continental margins where sedimentary rocks
were carried to great depths, metamorphosed, and intruded by igneous rocks.
There has been a growing (although not universal) tendency to interpret Archean
shield areas as the result of some form of plate tectonic activity, probably
involving accretion of island arcs and collision of small continental nuclei.
Theoretical considerations and the presence of magnesium-rich komatiitic lavas
have led to the suggestion that the interior of the early Earth was much hotter
than at present. The end of the Archean is marked in many places by amalgamation
of large numbers of volcanic arcs and crustal fragments, which together formed
the world's first large continental masses. This process appears to have
occurred over a long period of time, beginning at about 3.0 Ga in
Proterozoic
The Proterozoic Eon extends from 2.5 Ga
until 540 Ma, the beginning of the Cambrian Period and Phanerozoic Eon.
Proterozoic successions include new kinds of sedimentary rocks, display
proliferation of primitive life forms such as stromatolites, and contain the
first remains of complex organisms, including metazoans (the Ediacaran fauna).
Sedimentary rocks of the Proterozoic Eon contain evidence of gradual oxidation
of the atmosphere. Abundant and widespread chemical deposits known as banded
iron formations (BIF) make their appearance in Paleoproterozoic sedimentary
basins. See also: Banded iron
formation; Proterozoic
Paleoproterozoic
In
most Proterozoic depositional basins there is a higher proportion of sedimentary
than volcanic rocks. The world's first widespread glacial deposits are preserved
in Paleoproterozoic successions. The existence of glacial conditions so long ago
(∼2.3
Ga) is indicated by the presence of unusual conglomerates (diamictites or
tillites) with large rock fragments set in an abundant fine-grained matrix (Fig.
4a). These peculiar conglomerates consist of a variety of rock fragments set in
an abundant finer-grained matrix. Such conglomerates may form as a result of
deposition of unsorted sediments from glaciers, in which case they are called
tillites. Additional evidence of glaciation includes glacially scratched
(striated) rock surfaces, striated and faceted rock fragments and “dropstones”
(rock fragments that are interpreted as having been released, by melting, from
floating icebergs into finely bedded sediments; Fig. 4b). Possibly
contemporaneous Paleoproterozoic glacial rocks are known from five
continents. See also: Depositional
systems and environments; Glacial geology
Fig.
4 Glacial sedimentary rocks. (a)
Diamictites forming part of the Paleoproterozoic Gowganda Formation (∼2.3
Ga) on the north shore of Lake Huron,

Paleoproterozoic sedimentary rocks contain
some of the world's greatest accumulations of valuable minerals, such as the
uranium deposits of the Elliot Lake region in
The Paleoproterozoic also contains abundant
carbonate rocks. Some of these contain spectacular organo-sedimentary structures
called stromatolites (Fig. 5). The organo-sedimentary nature of these structures
is confirmed by the preservation of microscopic primitive prokaryotic cells of
photosynthetic cyanobacteria. These photosynthetic microorganisms trapped, or in
some cases precipitated, carbonates from seawater, resulting in the construction
of stromatolitic mounds of highly varied morphology. The metabolic activity of
the microorganisms responsible for building these structures contributed to
oxygenation of the atmosphere. Identical structures occur in some areas of the
modern ocean, such as shallow-water saline environments of
Fig.
5 Stromatolites in the upper part
of the Paleoproterozoic Snowy Pass Supergroup in southeastern

Two theories have emerged to explain
oxygenation of the atmosphere. Increased photosynthetic activity, due to
proliferation of stromatolites, is one. A second theory suggests that oxygen
produced by marine photosynthetic microorganisms was consumed by reducing
reactions related to widespread hydrothermal circulation of seawater at
mid-ocean ridges and in other oceanic volcanic systems. Although there was
significant production of photosynthetic oxygen, little was released to the
atmosphere. This idea is supported by the preservation of different proportions
of carbon isotopes (12C and 13C) in ancient organic carbon and carbonate rocks.
Removal of 12C during photosynthesis results in seawater that is enriched in the
heavier isotope. The carbon-isotopic composition of seawater may, under certain
conditions, be preserved in carbonate rocks. Differences in the ratios of carbon
isotopes of such carbonates and of organic carbon have been detected in many
Archean sedimentary rock successions. These data suggest that photosynthetic
activity was fairly widespread even during the early history of the Earth, but
that release of significant amounts of free oxygen to the atmosphere was delayed
until the tectonic regime changed from being ocean-dominated at the end of the
Archean. See also: Atmosphere,
evolution of; Cyanobacteria; Mid-Oceanic Ridge; Photosynthesis; Seawater
Another aspect of sedimentary geology that
supports an increase in free oxygen during the Paleoproterozoic Era is the
appearance of redbeds, sedimentary rocks that contain finely disseminated
hematite. Many sedimentary rocks of this kind formed in subaerial or
shallow-water settings where they were in close contact with the atmosphere,
which must have contained at least some free oxygen, to impart the
characteristic red or purple coloration of the highly oxidized iron. See also: Redbeds
Another indication of atmospheric change is
the preservation of widespread banded iron formations at around 2.0 Ga. The
major problem with these economically important and enigmatic chemical
sedimentary rocks is that iron is virtually insoluble in present-day rivers and
oceans. Under reducing conditions, such as those postulated for the Archean, the
solubility of iron would have been greatly increased. The development of
widespread banded iron formations in relatively shallow depositional settings in
the Paleoproterozoic is thought to represent a great “flushing out” of iron from
the oceans as a result of changes in the partial pressure of oxygen in the
atmosphere/hydrosphere system. Paleoproterozoic limestones in various parts of
the world display a period of exceptional 13C enrichment at around 2.0 Ga,
approximately the same time as the peak in banded iron formations production.
One explanation for the high 13C content of these carbonates is that
photosynthetic organic activity was particularly high, so that considerable
amounts of carbon were sequestered from atmospheric carbon dioxide (CO2),
leading to high 13C content in the oceans and also to release of oxygen as a
by-product.
By
the end of the Paleoproterozoic, many of the oceans formed by breakup of the
earliest(?) end-Archean “supercontinent,” known as Kenorland, appear to have
closed as a result of subduction and collisions to produce new large cratonic
areas. For example, much of what is now the North American continent amalgamated
at this time. There is plentiful evidence of widespread Mesoproterozoic igneous
activity, in the form of intrusive bodies such as anorthosites and as abundant
volcanic episodes, thought to be related to subduction and continental growth on
the margins of large continental masses.
A
notable feature of the Mesoproterozoic era is the dearth of evidence of
glaciation during this long time interval. The Mesoproterozoic era was brought
to a close by the Grenville orogeny, a widespread mountain-building episode that
is named from the Grenville tectonic province in eastern North America. This
orogenic period marks the construction of yet another supercontinent, known as
Rodinia. Much of the subsequent Precambrian history in the Neoproterozoic is
concerned with the complicated disintegration of Rodinia and culminates with the
opening of a precursor to the present-day Atlantic Ocean, known as the Iapetus
Ocean. See also: Orogeny
Neoproterozoic
The period between the approximate end of
the Grenville orogeny (∼1.0
Ga) and the beginning of the Cambrian (∼540
Ma) is known as the Neoproterozoic. This period is extremely important. It
contains evidence of several glacial episodes that may have been the greatest
that the world has known. Rocks belonging to this period preserve evidence of
the first complex fossil forms, the controversial Ediacaran fauna, that is
widely believed to represent the first animals with differentiated cells. These
enigmatic fossils are believed by some to represent the ancestors of subsequent
animal phyla. Others regard them as a “failed experiment” and assign them to
completely separate, extinct taxa. Most Ediacaran forms occur in sandy rocks
formed subsequent to deposition of the younger of two widespread glacial units,
which is thought to have been deposited at about 620 Ma. See also: Cambrian; Ediacaran biota
As
many as four or five glaciations have been postulated in the Neoproterozoic, but
at most locations it is possible to document only two. The two most widespread
glacial events are dated at about 750 Ma and 620 Ma and are respectively named
Sturtian and Marinoan, from localities in
Other
aspects
Both water and life appear to have existed
on Earth from at least 3.8
- P. E. Cloud, Oasis in Space, 1988
- P. F. Hoffman, United plates of America: Early Proterozoic assembly and growth of Laurentia, Annu. Rev. Earth Planet. Sci., 16:543–603, 1988
- H. J. Hofmann, New Precambrian time scale: Comments, Episodes, 15:122–123, 1992
- A. H. Knoll, End of the Proterozoic Eon, Sci. Amer., 262:64–72, 1991
- S. R. Taylor and S. M. McLennan, The origin and evolution of the Earth's continental crust, AGSO J. Austral. Geol. Geophys., 17:55–l62, 1997
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین-پرکامبرین
این وبلاگ تمامی موضوعات و مقالات و اطالاعات تخصصی زمین شناسی را که از سایتهای علمی جهان برگرفته شده در اختیار بازدیدکنندگان محترم قرار می دهد.گفتنی است که مطالب موجود در این وبلاگ در نوع خود بی نظیر بوده و از هیچ وبلاگ ایرانی ای کپی برداری نشده است و اگر هم شده منبع آن به طور کامل ذکر شده است.