Echinodermata

A phylum of exclusively marine animals with a peculiar body architecture dominated by a five-part radial symmetry. Echinodermata [from the Latin echinus (spine) + dermis (skin: “spiny skins”)] include the sea stars, sea urchins, and related animals. The body wall contains an endoskeleton of numerous plates (ossicles) composed of calcium carbonate in the form of calcite and frequently supporting spines. The plates may be tightly interlocked or loosely associated. The spines may protrude through the outer epithelium and are often used for defense. The skeletal plates of the body wall, together with their closely associated connective tissues and muscles, form a tough and sometimes rigid test (hard shell) which encloses the large coelom. A unique water-vascular system is involved in locomotion, respiration, food gathering, and sensory perception. This system is evident outside the body as five rows of fluid-filled tube feet. Within the body wall lie the ducts and fluid reservoirs necessary to protract and retract the tube feet by hydrostatic pressure. The nervous system of these headless animals arises from the embryonic ectoderm and consists of a ring around the mouth with connecting nerve cords associated with the rows of tube feet. There may also be diffuse nerve plexuses, with light-sensing organs, lying below the outer epithelium. The coelom houses the alimentary canal and associated organs and, in most groups, the reproductive organs. The body may be essentially star-shaped or globoid. The five rows of tube feet define areas known as ambulacra, ambs, or radii; areas of the body between the rows of tube feet are interambulacra, interambs, or interradii.

The larvae are usually planktonic (free-floating) with a bilateral symmetry, but the adults are usually sedentary and benthic (bottom-dwelling in a marine environment). They inhabit all oceans, ranging from the shores to the greatest ocean depths.

The phylum comprises about 7000 existing species. The Echinodermata have a good fossil record with about 13,000 fossil species. They first appeared in the Early Cambrian and have been evolving, since pre-Cambrian time, for well over 600 million years. During this time several differing body plans have arisen. The surviving groups show few resemblances to the original stock. The existing representatives fall into five, possibly six, classes: Crinoidea (sea lilies and feather stars); Asteroidea (sea stars); Ophiuroidea (brittle stars); Echinoidea (sea urchins, sand dollars, and heart urchins); and Holothuroidea (sea cucumbers). The recently described class Concentricycloidea (sea daisies) has been referred to the Asteroidea by some experts and retained as a distinct class by others.

The outline of classification for the phylum is shown below. Classes with living representatives are elaborated to the level of subclass or order.

Phylum Echinodermata

“Homalozoans”

Class: Ctenocystoidea

      Stylophora

      Homostelea

      Homoiostelea

“Crinozoans”

Class: Eocrinoidea

      Paracrinoidea

      Rhombifera

      Diploporita

      Crinoidea

      Blastoidea

      Coronoidea

      Parablastoidea

      Edrioblastoidea

Subclass: Inadunata

           Camerata

           Flexibilia

           Articulata

  Order: Millericrinida

           Cyrtocrinida

           Bourgeticrinida

           Isocrinida

           Uintacrinida

           Roveacrinida

           Comatulida

“Asterozoans”

Class: Somasteroidea

      Asteroidea

  Order: Platyasterida

           Trichasteropsida

           Paxillosida

           Notomyotida

           Spinulosida

           Valvatida

           Velatida

           Forcipulatida

Class: Concentricycloidea

  Order: Peripodida

Class: Ophiuroidea

  Order: Stenurida

         Oegophiurida

         Phrynophiurida

         Ophiurida

“Echinozoans”

Class: Helicoplacoidea

      Camptostromatoidea

      Edrioasteroidea

      Cyclocystoidea

      Ophiocistioidea

      Echinoidea

Subclass: Perischoechinoidea

  Order: Bothriocidaroida

           Echinocystitoida

Subclass: Cidaroidea

  Order: Cidaroida

Subclass: Euechinoidea

  Order: Diadematoida

           Echinothurioida

           Pedinoida

           Arbacioida

           Echinoida

           Phymosomatoida

           Salenioida

           Temnopleuroida

           Clypeasteroida

           Holectypoida

           Cassiduloida

           Spatangoida

Class: Holothuroidea

  Order: Dendrochirotida

           Dactylochirotida

           Aspidochirotida

           Elasipodida

           Molpadiida

           Apodida

 

Morphology

 

Despite displaying an astonishing variety of body forms, existing echinoderms share common anatomical features: symmetry, body wall, skeleton, nervous system, coelom, alimentary system, reproductive organs, and water-vascular system.

 

Symmetry

 

Adult echinoderms usually show pentamerism, a five-part radial symmetry in which there are normally five axes radiating out from a central point in the body. The mouth may lie on the underside, and the anus may lie on top of the animal. There are numerous exceptions: in the crinoids the mouth and anus lie on the same side, and in the holothuroids the mouth and anus lie at opposite ends of a cylindrical body. The side of the animal bearing the mouth is termed the oral side, and the side away from the mouth is the aboral side. The relationship of the mouth with the substratum was at one time considered important so that those echinoderms which were essentially sessile, with a mouth facing away from the substratum, were classified as subphylum Pelmatozoa, while those mobile forms in which the mouth faced the substrate were classified as Eleutherozoa. These differing life habits have little bearing upon formal echinoderm classification, but the terms “pelmatozoan” and “eleutherozoan” are useful descriptors of lifestyles in the phylum.

It has been suggested that five-part symmetry in echinoderms confers strength upon the skeleton supporting the body wall. Pentamerism was not an original feature of the echinoderms. Certain early groups such as the carpoids did not show it, and modern echinoderm larvae have bilateral symmetry.

 

Body wall

 

The body wall is cloaked in a thin epidermis, a layer of epithelial cells. The external layer is often ciliated, and the electron microscope has shown that these cells have an outer membrane that bears a great number of minute tubular extensions like microvilli. This arrangement of the epidermis is similar in appearance to the absorptive epithelium of many intestinal tissues. Below the epidermis, the dermis contains the skeletal elements. Internal to the dermis are the body-wall muscles and connective tissue. In the crinoids, ophiuroids, some asteroids, and some echinoids, the skeletal elements make up a great part of the body-wall volume. In the more flexible asteroids, the spherical echinoids, and the holothuroids, the volume of these elements is reduced. The inner surface of the body wall is also lined with epithelium and borders the coelom.

 

Skeleton

 

The skeleton is unique and consistent in all groups. Almost every plate, spine, or ossicle is composed of a single calcite crystal. During development each plate grows as a result of calcite secretion by a group of cells. The plate grows like a three-dimensional lattice (stereom) to produce a reticulate (having or resembling a network of fibers or lines) ossicle, with the tissue that secretes and maintains it (stroma) occupying the spaces within (Fig. 1).

 

 

Fig. 1  Cross section through the spine of an echinoid showing the microscopic structure of the skeleton. The stereom forms a continuous mesh, and the stroma that secretes it lies in the interspaces which, in this case, are arranged in radial rows.

 

 

 

 

 

 

 

Sensory and neuromuscular system

 

Echinoderms have simple sensory systems. The nervous system is ectodermal in origin and comprises a radial nerve cord lying along each ambulacrum. Each radial nerve connects with the circumesophageal nerve ring, and it is believed that interradial coordination takes place via this ring. The absence of a head means that sensory receptors and large areas of integrative nervous elements are not aggregated in one place. The nervous system is essentially diffuse, although specialized sense organs, such as the recently discovered “eyes” of certain brittle stars, occur. It appears that the circumoral ring and radial nerve cords take responsibility for gross activites such as posture, coordinated locomotion, and food collecting, but in the asteroids and the echinoids there are well-developed basiepithelial nerve networks that coordinate the numerous test appendages. Echinoderm muscles are principally smooth, but striated muscles have been detected in a few instances.  See also: Nervous system (invertebrate)

 

Coelom

 

The coelom is extensive and usually arises by enterocoely, or pouching, from the gut; but when there is direct development, with larval stages greatly reduced or absent, it may be schizocoelic, involving splitting in the mesoderm. The perivisceral coelom surrounds the viscera. During development, part of the coelom forms the water-vascular system, so the spaces within the tube feet and vessels are coelomic.  See also: Coelom

 

Alimentary system

 

In general the mouth is situated on the same side as the tube feet. From it arises the alimentary canal, which runs through the body to the anus (absent in the ophiuroids and some asteroids). The gut is lined by endoderm, and in some groups digestive caeea (blind pouches at the beginning of the large intestine) increase the area for absorption.

Particulate food is collected by the tube feet in many crinoids, ophiuroids, and holothuroids. Most asteroids are carnivores and engulf the prey, or evert part of the stomach over it, while some echinoids have well-developed chewing teeth for rasping at encrusting plants and animals. Many holothuroids, some echinoids, and a few asteroids ingest mud or sand, obtaining sustenance from associated organic material such as bacteria and diatoms.  See also: Digestion (invertebrate)

 

Reproductive system

 

The reproductive organs lie within the coelom in the interradial position, except in the crinoids in which they arise on the arms. In most echinoderms there are five compact gonads, but the holothuroids have just one, and certain echinoids may have two, three, or four. The sexes are usually separate, The gonads discharge gametes by short ducts into the surrounding seawater. In some echinoderms, especially in polar regions, fertilized gametes are retained, and the young develop in special sacs in the body wall.

 

Water-vascular system

 

This is a multifunctional fluid-filled coelomic system that probably evolved first as a respiratory system but later took on increasingly important roles in food collection and locomotion (Fig. 2). It comprises a number of protrusible, hollow, tentacle-like tube feet, arranged externally in rows along each radial area of the body. These areas, composed of single to multiple rows of tube feet, are termed ambulacra. A small modified test ossicle, the madreporite, perforated by many irregularly shaped pores, connects with the water-vascular system via a calcified stone canal. It was thought that the water-vascular system opened directly to the surrounding seawater via the madreporite so that extra fluid could be drawn in to replenish the water-vascular fluid. The fluid volume of the water-vascular system may be more constant than was previously believed, and relatively little fluid passes in or out of the madreporite. Each tube foot is associated with a small bulbous reservoir inside the body. The feet are extended hydrostatically, and retracted by longitudinal muscles in their walls.

 

 

Fig. 2  Diagram of the water-vascular system in an echinoid. Arrows show direction of fluid flow.

 

 

 

 

 

 

The form and the activity of tube feet vary greatly between the groups of echinoderms. In the crinoids they are fine, tapering structures suited for food collection and having no locomotory role. In the brittle stars they lack terminal suckers and are more important for food gathering than locomotion. In some asteroids, particularly the burrowers, they are tapering and pointed, while in others they are suckered and capable of adhering to the substratum. This is also the case in regular echinoids (which have no front or back end and can move in any direction), but in irregular echinoids (which have a definite front and back and do move in a particular direction) the tube feet are modified to suit the burrowing way of life. In holothuroids the tube feet surrounding the mouth are modified as tentacles of varying form and complexity and are used for food collecting. The rest may be present as locomotor or respiratory organs. In a few groups, such as the apodous and molpadiid holothurians, tube feet are missing from the body wall. When tube feet serve an important locomotor function, postural muscles govern the stepping movements.

Each tube foot is under the control of the radial nerve cord and is connected by a short lateral branch to the radial water-vascular canal as well as to the individual ampullae. All the radial canals are linked by the circumoral ring canal so that water-vascular fluid may be withdrawn from one part of the system to be supplied to another.

Saclike structures are associated with the ring canal. These are polian vesicles, which act as reservoirs for water-vascular fluid, and Tiedemann's bodies, which act as glands in which wandering coelomocytes (coelom corpuscles) are formed.

 

 

Embryology

 

Most echinoderms have an indirect development with a prolonged, food-gathering larval stage (Fig. 3). The larva feeds, usually on microscopic phytoplankton, using a ciliary mechanism. Two well-marked larval types occur: the pluteus group, with long-armed, bilaterally symmetrical, easel-shaped forms, common to ophiuroids and echinoids; and the auricularia group, barrel-shaped forms with a winding ciliated band which may be produced into lobes. The latter group is common to asteroids and holothuroids. In most asteroids the auricularia stage is followed by a similar but more complex larva, the bipinnaria, or sometimes also by an anchored final larval stage, the brachiolaria. Surviving crinoids have essentially a direct development, sometimes with a simple yolky larva, a vitellaria, which does not feed. This is also the case for several members of other extant echinoderm groups.  See also: Invertebrate embryology

 

Phylogeny

 

The auricularia larva presents close and striking resemblances to the tornaria larva of some enteropneusts, and the enterocoelous development parallels that in primitive chordates. Hence echinoderms and chordates have long been regarded as related. However, the significance of similarities in the larvae of echinoderms and protochordates must be viewed in the context of molecular, morphological, and paleontological research. It seems likely that the similarities between the larvae of ophiuroids and echinoids, and asteroids and holothuroids, are due to convergent evolution and not to common evolutionary origins. The results of paleontology, molecular studies, and morphology indicate that ophiuroids and asteroids are closely related. Therefore it follows that within the phylum larval similarities do not indicate phylogenetic affinities. It is inadvisable to try to extrapolate beyond the phylum, so as to infer phylogenetic affinity between hemichordates and echinoderms solely on the ground that the auricularia resembles the tornaria. E. Marcus expressed the opinion that indirect development, with possession of pelagic larvae, must be prototypical for echinoderms and protochordates, and the asteroids and ophiuroids must be closely related, and therefore broad phylogenetic conclusions cannot be drawn on the basis of their larvae. L. Hyman grouped the extant echinoderms as their larval similarities suggest, and concluded that the arrangement adopted by paleontologists must be wrong. H. B. Fell and later authors have reaffirmed that the paleontological evidence overrules nebulous embryological considerations.

David L. Pawson

Andrew C. Campbell

 

Ecology and Feeding

 

Echinoderms occur everywhere in the world's oceans, but they are usually rare in areas where the salinity of the water is greatly reduced or where pollution levels are significant. In many areas, echinoderms are dominant invertebrates in terms of numbers or biomass, and locally sea stars can be the top predators. On a rocky shore, predatory sea stars and vegetarian sea urchins may be common on and under rocks. Brittle stars are typically concealed under rocks; they may emerge at night to forage for small organisms. In deeper water, where conditions are suitable for suspension feeding, huge aggregations of brittle stars or feather stars may occur, with their arms extended into the water for feeding. Echinoderms flourish on and near coral reefs, and it is in these tropical areas that they can achieve their greatest diversity. In polar regions, especially around Antarctica, echinoderms, along with sponges, dominate in most habitats (Fig. 4). Sandy to muddy bottoms may be populated with large numbers of burrowing detritus-eating sea urchins, long-armed brittle stars, and sea cucumbers. In such habitats, burrowing sea cucumbers may extend their sticky tentacles into the surrounding water to capture small drifting organisms. In deeper water, below 100 m (330 ft), stalked sea lilies can be common on hard substrates, efficiently suspension-feeding with their arms deployed in the form of a parabolic bowl. In the deep sea, echinoderms can also be dominant; on abyssal (relating to great ocean depths) plains, sediment-swallowing sea cucumbers can make up more than 95% of the total biomass on the sediment surface. Most echinoderm groups occur in the deep sea to depths in excess of 9000 m (5.6 mi).

David L. Pawson

 

 

Fig. 4  Echinoderms in the deep sea near Antarctica at a depth of 595 m (1950 ft). Three sea cucumbers (Scotoplanes globosa) are feeding on seafloor sediments. At bottom right is a brittle star, probably Ophiomusium species. Scattered on the seafloor but barely visible are several feather stars. (Courtesy of the U.S. National Science Foundation)

 

 

 

 

 

 

 

Fossils

 

Echinodermata are an especially important group of fossil invertebrates. Except for reworked fragments found in some nonmarine deposits, echinoderm remains occur exclusively in strata laid down on sea bottoms—chiefly those of shallow seas. Many of these deposits, ranging in age from Cambrian to late Tertiary, contain abundant echinoderm fossils. In addition, fossil echinoderms undoubtedly are widely distributed beneath all oceans, although remains of these organisms in deep-water sediments, even of recent origin, are virtually unknown because of their inaccessibility.

The echinoderms are well adapted to preservation as fossils owing to their abundant calcareous skeletal elements. Paleontological importance of the group is explained partly by this fitness but more by the diversity of their kinds, the generally short-lived existence and wide geographic distribution of most recognized taxonomic units, and the clearness with which evolutionary trends can be defined.

 

Classification and Description

 

For some years, fossil and living echinoderms have been arranged into four or five subphyla. As formal groupings, the subphyla have been largely abandoned, for it is recognized that the subphylum definitions and distinctions are artificial rather than truly reflecting phylogeny. However, the subphylum names are useful for grouping the various echinoderm classes, and they are used here in an informal sense: homalozoans, crinozoans, echinozoans, and asterozoans. Similarly, the terms eleutherozoan (free-moving) and pelmatozoan (sedentary or sessile), previously used in formal classifications, are useful today in categorizing the lifestyles of echinoderms.  See also: Eleutherozoa; Pelmatozoa

 

Homalozoans

 

The distinctive features that separate the extinct homalozoans (or carpoids) from all other Echinodermata are a complete lack of radial symmetry in arrangement of skeletal parts and the flattened body form, from which one or more specialized slender appendages may extend. Plates enclosing the body are irregular in shape and size and vary in number between forms. There are four quite dissimilar classes of carpoids: Homostelea, Ctenocystoidea, Stylophora, and Homoiostela. Some experts, especially R. Jefferies, believe that some of the homalozoans, the Stylophora in particular, are not echinoderms at all, but are “calcichordates,” groups forming the stem of the chordates. There has been considerable debate in the scientific literature about this matter, with persuasive evidence presented on both sides. Most paleontologists tend toward the idea that all homalozoans are true echinoderms. The homalozoans range in age from earliest Cambrian to Carboniferous.  See also: Carpoids; Homalozoa

 

Crinozoans

 

The crinozoans evidently include types of echinoderms least modified from the ancient progenitors of the phylum. Crinozoans range from Cambrian to Recent, but only the Crinoidea, abundant in Paleozoic formations, have survived to the present. In some classifications, the Crinoidea and Paracrinoidea are treated as the subphylum Crinozoa in the strict sense, and the other classes are grouped together in the subphylum Blastozoa. A characteristic crinozoan feature is orientation of the body with the oral (ventral) side directed upward and aboral (dorsal) side downward; thus, although commonly used, the designations ventral and dorsal are not suited to these particular echinoderms (Figs. 5c and 6). There are nine classes of crinozoans:

(1) Eocrinoidea (the crinozoan stem group) and (2) Paracrinoidea are crinozoan groups attached by a stalk. They have ovoid bodies enclosed by irregularly arranged plates that commonly lack well-developed radial symmetry and possess a combination of characters typical of the two following classes. (3) Diploporita and (4) Rhombifera (previously grouped in the polyphyletic Cystoidea, with saclike bodies, and each possibly polyphyletic) are a diverse group of primitive crinozoans distinguished especially by pores or tubular canals that penetrate irregularly arranged plates enclosing the body. Attachment to the substrate was by means of a stem composed of superposed discoid plates. (5) Crinoidea (sea lilies) include the most abundant crinozoans, most of the fossil forms anchored to the sea bottom by means of a short to very long stem and distinguished by upwardly directed arms which functioned for gathering food. Some ancient and most modern crinoids are stemless, known as feather stars, and adapted for a free-living existence. True radial symmetry and regularity of skeletal construction are attributes that distinguish crinoids. (6) Blastoidea (budlike forms) are small to medium-sized crinozoans having a highly developed radial symmetry and very regular arrangement of the few plates surrounding the body. The body was attached to the substrate by a very slender stem, which had a circular cross section. (7) Coronoidea is a small group of middle Paleozoic crinozoans, similar to blastoids and probably ancestral to them. Coronoids differ in the structure of the ambulacral plate and possess erect, as opposed to recumbent, ambulacra. (8) Parablastoidea is another small, principally Ordovician class of crinozoans with cystoid-like thecae but with uniserial ambulacra. (9) Edrioblastoidea comprises a single Ordovician genus with a theca that is blastoid-like in shape and symmetry but lacks brachioles or hydrospires (or pore rhombs).  See also: Crinozoa

 

 

Fig. 5  Representative types of echinoderms. (a) Regular echinoid (Lytechinus, Recent), oblique aboral view, right half with spines removed, showing two ambulacra and three interambulacra. (b) Diagrammatic section through a, showing the stoutly built test. (c) Crinoid showing the stem and three arms, calyx sectioned. (d) Asteroid (Dermasterias, Recent), aboral oblique view. (e) Diagrammatic section through the ray at left in d and opposite the interambulacrum. (f) Holothuroid, oral view showing tentacles around the mouth. (g) Holothurian, lateral view.

 

 

 

 

 

 

 

Fig. 6  Fossil pelmatozoan echinoderms. (a) Rhombiferan cystoid (Echinoencrinus, Ordovician). (b) Diagrammatic oblique view and section through a cystoid pore rhomb (half of one rhomb toward front bisected by a suture between plates). (c) Oblique view and section of a diploporitan cystoid plate. (d) Section through the ambulacrum of a blastoid (Pentremites, Mississippian) showing hydrospires beneath the lancet and side plates. (e) Blastoid (Pentremites) with brachioles restored along the side of one ambulacrum. (f) Edrioasteroid (Carneyella, Ordovician), oral view. (g) Section through a stalkless edrioasteroid. (h, i) Flexible crinoid (Taxocrinus, Mississippian), posterior side and partial plate diagram showing the right posterior plane of bilateral symmetry defined by the infrabasal circlet. (j–p) Inadunate crinoids, some showing anal sacs and parts of arms: (j) Carabocrinus, Ordovician; (k) Botryocrinus, Devonian; (l) Cyathocrinites, Mississippian; (m) Cupulocrinus, Ordivician; (n–p) Delocrinus, Pennsylvanian. (q) Diplobathrid camerate crinoid (Ptychocrinus, Ordovician), plate diagram. (r, s) Monobathrid camerates: (r) Macrostylocrinus, Devonian; (s) Periechocrinites, Mississippian, plate diagrams showing noteworthy distinctions in basal and radial circlets. (Parts f, g after L. H. Hyman, The Invertebrates, vol. 4: Echinodermata, McGraw-Hill, 1955)

 

 

 

 

 

 

 

Eocrinoids

 

This small group of Cambrian to Silurian crinozoans combines characteristics of cystoids and crinoids, yet differs significantly from both. They resemble cystoids in their mode of branching of the ambulacral grooves and ventrolateral location of the anus but lack thecal pores or distinct pore rhombs; they are like crinoids in plate structure and similarity of plate arrangement in the calyx (plated body). The eocrinoids have stems and unbranched or bifurcating arms. They were probably ancestral to all other crinozoans.  See also: Eocrinoidea

 

Paracrinoids

 

Paracrinoidea are stem-bearing echinoderms that also combine features of cystoids and crinoids, but in a manner quite unlike that of the eocrinoids. The paracrinoids, now known only from Middle Ordovician to Lower Silurian deposits, have numerous plates of the calyx that are not arranged in series and that lack a ventrally differentiated area corresponding to the tegmen of crinoids. The plates have a cystoid-like pore structure, but the arms are comparable to those of crinoids.

 

Cystoids

 

The Ordovician to Devonian cystoids, comprising the classes Diploporita and Rhombifera, are extinct crinozoans of globose, subcylindrical, or flattened ellipsoidal form that are characterized mostly by irregularity of the body plates (Fig. 6a) and a short, weak stem. A variable number of slender appendages (brachioles) on the upper side of the calyx, supplemented by ambulacral grooves, served for gathering food. The mouth was located centrally at the summit of the calyx, and an anus was fairly well down on one of the sides, which accordingly is defined as posterior. Other small orifices, interpreted as hydropore and gonopore, occur near the anus. In one class, Diploporita, the numerous calyx plates are perforated by numerous pairs of minute tubular openings that allow seawater to circulate through them (Fig. 6c). Remaining cystoids are named Rhombifera (rhomb-bearing forms) because some or all of their relatively few calyx plates are penetrated by rhomb-shaped groups of tubes running parallel to each other and to the plate surfaces (Fig. 6a). The two halves of any rhomb lie on adjoining plates, with the tubes crossing the plate boundaries at right angles (Fig. 6b). The pattern of calyx plates suggests that the blastoids and crinoids may be descendants of rhombiferan cystoids.  See also: Rhombifera

 

Crinoids

 

In terms of abundance of fossil remains, the crinoids outrank all other echinoderms combined (Fig. 5c). There are about 5000 extinct species and at least 700 living kinds. Some Paleozoic deposits hundreds of feet thick in areas measured in hundreds of square miles are largely composed of fossil remains of trillions of crinoids.  See also: Crinoidea

Skeletal features

 

Although many modern and some ancient crinoids are stemless as adults, this group of pelmatozoans typically is attached to the sea bottom by a more or less elongate stem composed of superposed calcareous discs (columnals) perforated centrally by a circular, pentagonal, or pentastellate canal. At the opposite extremity of the stem, which exceptionally may be 15 m (50 ft) tall, is the crinoid body, encased in regularly arranged plates and surmounted by branched or unbranched free-moving arms. The conjoined plates below the free arms make up the so-called dorsal cup; this cup, along with the plates of the ventral surface composing the tegmen, makes up the crinoid calyx (Fig. 6h–s). The calyx and its attached arms are termed the crown. The mouth is located on the ventral surface. The anus lies on the tegmen, is raised above it on an anal sac (Fig. 6k–m), or may lie on the side of the dorsal cup. The posterior side of the crinoid is defined by the position of the anus in one of the interrays or by extra plates introduced in such a position on one side of the dorsal cup; the ray opposite to the posterior interray is defined as anterior. This establishes a plane of bilateral symmetry that more of less modifies the fundamental radial symmetry of the crinoid (Fig. 7a).

 

 

Fig. 7  Bilateral symmetry developed in various echinoderms. Anterior and posterior directions are indicated where distinguished. All diagrams represent aboral views. (a) Crinozoans (in general, most crinoids, cystoids, edrioasteroids); letters denote ray designations according to the Carpenter (P. H. Carpenter, 1884) system: A, anterior; B, right anterior; C, right posterior; D, left posterior; E, left anterior. (b) Blastoids, heterocrinoids, with subordinate bilateral symmetry in the left posterior plane. (c) Homocrinoids, with primary bilateral symmetry in the left anterior plane. (d) Glyptocrinoids, flexible crinoids, and rhombiferan cystoids, with subordinate bilateral symmetry in the right posterior plane. (e) Holothuroids. (f) Regular echinoids, rays marked according to the Lovén (S. Lovén, 1874) system, III being considered anterior. (g) Irregular echinoids, with prominent bilateral symmetry in the left posterior plane of crinozoans. (h) Asteroid, with subordinate bilateral symmetry in the left anterior plane.

 

 

 

 

 

 

The plates of the crinoid dorsal cup are arranged in a regular pattern of successive circlets, but with differences in various groups that furnish a basis for classification. Each circlet normally contains five plates. At the base of each ray is a radial plate. Beneath the circlet of radials are five basals that are interradial in position; some crinoids have a still lower circlet of infrabasals that alternate with the basals and hence occur in radial position. Crinoids with a single circlet of plates below the radials are termed monocyclic (Fig. 6r and Fig. 6s), and those with two circlets are dicyclic (Fig. 6h–q).

In some crinoids the tegmen is stoutly constructed of small, irregularly arranged plates, while in others it consists of a flexible, leathery integument that may be studded with calcareous ossicles. Five subequal oral plates larger than others of the tegmen may occur interradially around the mouth. The arms of crinoids are extremely variable in plan and construction. They may be unbranched or moderately to highly branched, with or without very numerous tiny branchlets called pinnules, and composed of a single or double series of arm plates (brachials). These characters, along with the mode of articulation among plates of the rays, are important also in classification.

 

Main types

 

Four subclasses of crinoids are recognized, three of them distributed from Ordovician to Permian; one of the three (Inadunata) persists to Middle Triassic. The fourth subclass (Articulata) ranges from the Mesozoic to present day.

The Inadunata (“not united” forms, referring to lack of incorporation of lower arm plates in dorsal cup) are crinoids with a relatively small dorsal cup containing one or two circlets of plates below the radials and having the arms entirely free above the cup (Fig. 6j–p). They include 1750 or more species that exhibit great variety in form and evolutionary trends. In a majority the anteroposterior plane of bilateral symmetry is well marked, without other deviation from a regular pentameral plan (Fig. 7a), but in one group (superfamily Homocrinacea) a surprising degree of bilateral symmetry was developed in the plane of the left anterior ray (Fig. 7c). Some of these crinoids have a strongly downbent crown that was hinged on the summit of the stem. In another group (superfamily Heterocrinacea) a subordinate plane of bilateral symmetry is oriented in the left posterior plane (Fig. 7b).  See also: Inadunata

The Camerata (chamber or “box” forms) are most numerous among ancient crinoids in both variety and quantity of individuals (Fig. 6q–s). More than 2500 species of these fossils have been described, two-thirds of which come from Mississippian rocks alone. The camerates are distinguished by the stout construction of their calyx, which incorporates lower ray plates and interradials in the dorsal cup, and subtegminal location of the mouth. Types with both one and two circlets of plates beneath the radials are common. Anteroposterior bilateral symmetry is developed almost universally in these crinoids as a modification of the dominant pentameral pattern (Fig. 7a); a secondary plane of bilateral symmetry directed through the right posterior ray prevails in the monobathrid suborder Glyptocrinina, as in all flexible crinoids (Fig. 7d).  See also: Camerata

The Flexibilia (flexibles) are a distinctive assemblage of exclusively dicyclic crinoids characterized by movable ligamentous union between most of the plates and several constant features in the organization of the calyx (Fig. 6h and Fig. 6i). They include approximately 300 described species, all of which exhibit a secondary bilateral symmetry in the right posterior plane in addition to their generally well-marked primary bilateral symmetry directed anteroposteriorly (Fig. 7d).  See also: Flexibilia

The Articulata (forms divided into joints) comprise Mesozoic and Cenozoic crinoids, represented by about 500 fossil and about 700 living species. The stalked articulate crinoids have been classified into four orders: Millericrinida, Cyrtocrinida, Bourgeticrinida, and Isocrinida. All of these orders have fossil and extant representatives. Some experts have abandoned the order categories for the 100 species of living stalked crinoids and prefer to arrange them into 11 families. There are three orders of unstalked crinoids: Uintacrinida and Roveacrinida are extinct, while the Comatulida (feather stars) has about 600 living species. Extant sea lilies are confined to depths below about 100 m (330 ft). The stalk is usually attached to a hard substratum—a rock, or a piece of shell embedded in soft mud—by means of a terminal disc cemented to the substratum or by means of claw-like whorls of cirri. In a few species, the end of the stalk is branched and rootlike for anchoring the stalk in soft sediments. When detached from the substratum and lying on the seafloor, sea lilies are capable of slowly moving to a new site. In contrast, the feather stars are highly mobile, often capable of active swimming by thrashing of the arms in an up-and-down motion. Feather stars range from shallow waters to great ocean depths. They are common on coral reefs, and in certain suitable habitats can reach population densities of hundreds of individuals per square meter. Sea lilies and feather stars are passive suspension feeders; they extend their arms into the water and capture small drifting organisms and particulate matter on their sticky tube feet. Captured items are conveyed to the mouth along food grooves by means of ciliary action. In extant crinoids, the gonads develop inside the pinnules near the bases of the arms, causing conspicuous swelling. At the appropriate time for breeding, the pinnules burst to release eggs or sperm into the surrounding seawater.  See also: Articulata (Echinodermata)

 

 

Blastoids

 

Blastoidea, Ordovician to Permian, display a regular, fivefold radial symmetry (Fig. 6e), on which are superposed a first order of bilateral symmetry in the anteroposterior plane and a second order directed through the left posterior ray (Fig. 7b). The calyx of average-size specimens is small, with diameter of about 15 mm (0.6 in.) and height of 20 mm (0.8 in.). It is composed of 23 or 24 plates, of which five (lancet plates) are not visible externally on unweathered specimens. Within forks of the radials are a multitude of very diminutive so-called side plates that conceal the lancets; they form ambulacral areas bordered laterally by rows of threadlike free armlets (brachioles) that function as food gatherers. Particles of food are conducted to midlines of the ambulacra and thence upward to the mouth, which is at the center of the ventral surface. Beneath the ambulacra are extremely delicate, longitudinally folded, calcareous lamellae that enclose narrow troughs for circulation of water admitted through pores at the base of the brachioles; these structures, termed hydrospires, correspond to the slitlike parts of pore rhombs in the rhombiferan cystoids (Fig. 6d). More than 500 species have been described.  See also: Blastoidea

 

Asterozoans

 

The asterozoans are star-shaped, free-moving echinoderms with well-marked radial symmetry in arrangement of their skeletal parts. They are easily recognized by their strongly developed arms and central disk (Fig. 5d and Fig. 5e). The arms of most asterozoans, with their tube feet functioning for locomotion and predation, are highly mobile. They range in age from Early Ordovician to Recent but are more abundant and varied in modern seas than in the fossil record. They are divided into four classes: Somasteroidea, Asteroidea, Concentricycloidea, and Ophiuroidea. The extinct Somasteroidea ranged from the Ordovician to the Devonian. Somasteroids resemble true sea stars in general shape, with broad arms, but the arms are unique in having a pinnate arrangement of rodlike plates. Asteroidea (sea stars) are distinguished by prominent flexible rays that join the central disk without clearly shown demarcation (Fig. 5d and Fig. 5e). Concentricycloidea are flattened and discoidal with no evident arms. The Ophiuroidea (brittle stars) have long, slender, snakelike arms which are sharply set off from the central discoid body. They are very active echinoderms, able to crawl rapidly in any direction.

 

Somasteroids

 

These rare, broad-armed sea stars are especially characterized by the featherlike arrangement of parallel, rodlike plates in their wide petaloid rays. The rods extend outward from the medially placed ambulacral plates. A food-carrying groove is contained in each ray. The aboral side of the skeleton has a rough, coarse meshwork.

 

Asteroids

 

The sea stars have a long fossil history, ranging back to the Ordovician. Sea stars are comparable to the ophiuroids in their general stellate form (Fig. 5d and Fig. 5e, Fig. 7h). They differ from the brittle stars in two main respects: lack of strongly marked separation between the body and its radially disposed hollow arms, and the open ambulacral grooves along the ventral side of the arms. The skeletal elements tend to be loosely joined; consequently, asteroids are not well suited for fossilization in a manner showing the skeletal arrangement of the entire animal. Sea stars may range in size from a few millimeters to over a meter (3.3 ft) in diameter. Ossicles along the ambulacra occur in two or four series differentiated as ambulacrals and adambulacrals. Some asteroids lack obvious arms and are essentially pentagonal with ambulacral grooves on their ventral (oral) side. Others, such as the Heliasteridae, develop as many as 44 arms as they grow, losing their fundamental pentameral symmetry but structurally resembling common types of asteroids. A single madreporite lies on the upper (aboral) surface, placed between the arms (interradially). An anus is present in the center of the aboral surface in most groups and absent in others (notably the Paxillosida).

 

Behavior

 

Asteroids are universal symbols of the ocean. They are conspicuous in a great variety of habitats, from mud to sand to rock to coral reefs. In some areas they can be present in great numbers, causing local habitat damage. The multiarmed, crown-of-thorns sea star, reaching 1 m (3.3 ft) in diameter, is common on Indo-Pacific coral reefs. It can move across reefs in large swarms, eating the soft coral tissues and causing short- to long-term devastation of reefs. Some groups of sea stars, notably the Paxillosida, have pointed rather than suckered tube feet, and they tend to swallow prey whole (such as small clams and sand dollars), ejecting the shells from the mouth when digestion is complete. The Forcipulatida are notorious predators; a forcipulatid may attach its suckered tube feet to the two shells of a clam or a mussel and then, for several hours if necessary, gently pull on the two shells, until the bivalve's muscles tire, the shells open a fraction of an inch, and the sea star drops its stomach into the bivalve, digesting the animal inside its own shell. Some deep-sea asteroids are mud-swallowers, digesting from the mud whatever organic material may be present.

 

Classification

 

The classification of the Asteroidea has been revised by many authors over the past 50 years or so. In recent years, the most commonly used classification of both fossil and extant forms is that proposed by D. B. Blake. Extinct Paleozoic orders are Platyasterida, Pustulosida, Hemizonida, and Uractinida. Post-Paleozoic sea stars include the extinct order Trichasteropsida, and seven extant orders, all of which also have fossil representatives: Paxillosida, Notomyotida, Velatida, Valvatida, Spinulosida, Forcipulatida, and Brisingida.  See also: Asteroidea; Notomyotida; Paxillosida

 

 

Concentricycloids

 

The sea daisies comprise three extant deep-sea species, two known from the Pacific Ocean and one from the Atlantic. Sea daisies are flattened, discoidal echinoderms up to 15 mm (0.6 in.) in diameter. The upper surface is covered with delicate overlapping plates; the lower surface has a mouth frame and a single peripheral ring of tube feet. These animals have been found only in association with pieces of wood on the deep-sea floor. Presumably, they attach to the wood substratum using their suckered tube feet. This class was discovered and diagnosed in 1986, and its formal status has been debated ever since. Several scientists have argued persuasively that the concentricycloids should be placed in the Asteroidea, while others maintain that they represent a separate class of echinoderms.

 

Ophiuroids

 

The brittle stars or serpent stars composing the Ophiuroidea are highly mobile echinoderms closely related to the sea stars. They are distinguished readily by their external form, since the small, rounded to pentagonal or scalloped disk is sharply set off from the symmetrically placed long, slender arms that extend radially outward from it. The arms may be smooth or spiny. Almost invariably they are five in number and unbranched, but in a few kinds, such as the Recent basket stars (Gorgonocephalidae), the arms are repeatedly bifurcated. All known fossil ophiuroids have simple arms. The skeleton of the central disk is composed of many regularly arranged plates, without any deviation on either the aboral or oral surfaces from perfect pentamerous symmetry. The mouth is at the center of the oral surface; an anus is lacking. A single interradial madreporite is present on a plate near the mouth; in some basket stars there are five interradial madreporites around the outer margin of the mouth skeleton. The arms are solid, not hollow as in asteroids. The arm skeleton is distinctive in being internal, consisting of “vertebrae” formed from fused ambulacral ossicles. Brittle stars are common in a great variety of habitats—living under rocks, concealed in coral reefs, or scattered in enormous numbers across great expanses of mud on the deep-sea floor. Many brittle stars are selective detritus feeders; others feed by extending their arms into the seawater and capturing small drifting organisms or particles on their sticky tube feet. Recent investigations have shown that certain brittle stars have well-developed eyes in their upper-arm skeletons, and they can respond rapidly to changing light regimes, seeking shelter in crevices as necessary.

Fossil ophiuroids are known from Lower Ordovician to Pleistocene (Recent), but they are not abundant. Fewer than 100 species have been described from Paleozoic, Mesozoic, and pre-Recent Cenozoic formations, as compared with approximately 2000 known living species. Ophiuroids are arranged in four orders: the extinct Stenurida (Ordovician to Devonian) and Oegophiurida (Ordovician to Carboniferous), and the extant Phrynophiurida and Ophiurida (Ordovician to Recent).  See also: Ophiuroidea

 

Echinozoans

 

These echinoderms generally have an ovoid or globose body, and they lack armlike appendages. Some echinozoans may have a low discoid body or an elongate cylindrical to almost wormlike form. All have conspicuous radial symmetry of their skeletal parts, and in almost all the symmetry is pentamerous. The skeleton of some echinozoans consists of a rigidly constructed test to which movable jaw parts and external spines are attached, whereas in others all skeletal parts either are joined together flexibly or are reduced in size and separated from one another by leathery tissue. The echinozoans comprise seven classes: Helicoplacoidea, Camptostromatoidea, Edrioasteroidea, Cyclocystoidea, Ophiocistioidea, Echinoidea, and Holothuroidea, the first five of which are long-extinct groups, while the others are represented by both fossil and living forms. (1) The Helicoplacoidea are Lower Cambrian forms with a flexible, expansible test composed of spirally arranged plates. (2) The Lower Cambrian Camptostromatoidea are conical or domal animals with plates of varying size overlapping on the lower theca. (3) Edrioasteroidea (“sessile sea stars”) range from the Ordovician to the Permian. They have a many-plated test, ranging from rigid to somewhat flexible, of generally discoid shape with five distinct, straight or curved rays on the upper surface. Some were able to move about, but nearly all are found attached to some hard foreign object, such as a brachiopod or other invertebrate shell. (4) The Cyclocystoidea are Ordovician-to-Devonian echinoderms with a disk-shaped body, the upper surface of which is covered by plates arranged in concentric rings. (5) The Ophiocistioidea are Ordovician-to-Devonian echinoderms that differ from other classes in having large fine-plated tube feet, but share some skeletal features with the Holothuroidea, with which they have sometimes been aligned. (6) The Echinoidea (sea urchins) are characterized by a rigid to flexible skeleton of varied shapes, though mostly ovoid to subglobose, covered by numerous long or short movable spines (Fig. 5a and Fig. 5b). Pentameral symmetry is strongly developed, modified in all orders by more or less distinct bilateral symmetry and in some by differentiation of anterior and posterior regions. Very abundant in present-day seas, sea urchins range from Early Ordovician onward. (7) The Holothuroidea (sea cucumbers) are soft-bodied, leathery-skinned echinozoans with an elongate cylindrical body and skeletal parts usually consisting of discrete, generally microscopic, ossicles (“little bones”) embedded in the body wall and internal tissues (Fig. 5f and Fig. 5g).  See also: Echinozoa

 

Edrioasteroids

 

A unique assemblage of mainly early Paleozoic attached echinoderms (Fig. 6f and Fig. 6g), Edrioasteroidea were distributed from Lower Cambrian to Upper Carboniferous. They had no stem for anchorage but were fixed by their entire base. The upper (ventral) side was covered by many flexibly joined plates, which are sharply differentiated into rows of paired ambulacrals with adjoining adambulacrals and irregular interambulacrals. The five ambulacral tracts curve outward from the centrally located mouth, with their extremities often deflected rather strongly in a consistent way. The anus lies in one of the interrays that accordingly is regarded as posterior. 

 

Helicoplacoids

 

Numerous representatives of Helicoplacoidea have been found in the oldest fossil-bearing strata (Olenellus Zone) of the Lower Cambrian at localities in western Nevada and southern California. The body is ovoid to pyriform, enclosed in a test of loosely joined, spirally arranged rows of elongate plates, with columns, interpreted as ambulacral, and intervening ones, as interambulacral, originating at an apical pole and extending to the opposite oral pole. The test could be distended and retracted so as to change its shape and volume. Other echinoderms associated with these oldest echinozoans include representatives of the pelmatozoan class Eocrinoidea.  See also: Helicoplacoidea

 

Echinoids

 

The class Echinoidea is the most important group of fossil eleutherozoan echinoderms (Fig. 5a and b; Fig. 8). They are distinguished from crinozoans by freedom from a sessile mode of life, and they share with the holothuroids a downward orientation of their oral surface. Modern species of echinoids total approximately 800, as shown by T. Mortensen's several-volume monograph (1928–1952) covering all known living kinds. In comparison, 2000 species of sea stars, 2000 species of brittle stars, and 1200 species of sea cucumbers are alive today. All eleutherozoan groups are known as far back as Ordovician time, and yet fossil echinoids are more numerous than all others of the assemblage combined. Such disparity reflects inequality in fitness of the different sorts of skeletons to be preserved. Not all parts of echinoid skeletons may be found intact. Multitudes of movable spines attached to the test during life tend to be separated and scattered, as does the echinoid masticatory apparatus, which is known as the Aristotle's lantern. Thus, knowledge of the entire skeletal structure of most fossil echinoids is incomplete.  See also: Echinoidea

 

 

Fig. 8  Fossil echinoids. (a) Regular form (Echinocrinus, Mississippian), aboral view showing the anus and periproct, wide interambulacra and narrow ambulacra. (b) Irregular form (Eupatagus, Paleogene), aboral view, left side showing an unweathered appearance with many spine bases, right side showing the plate structure with ornamentation omitted; anterior ray directed upward. (c, d) Types of echinoid spines: (c) Porocidaris, Paleogene; (d) Balanocidaris, Jurassic.

 

 

 

 

 

 

Morphology

 

The echinoid test is typically globular, unevenly ovoid, or discoid in shape (Figs. 5 and 8). Mainly it is formed by 10 meridionally disposed bands of plates, of which five are ambulacral, distinguished by porelike openings between or through the plates for passage of the tube feet; the five bands of plates that alternate with the ambulacrals are interambulacral and lack perforations for tube feet. In most echinoids, both living and fossil, the plates are joined together rigidly, but in a minority the union is somewhat flexible and imbricating (having overlapping edges). Virtually all post-Paleozoic echinoids have a constant arrangement of the ambulacral and interambulacral groups of plates, each of the 10 bands comprising a double column, making 20 columns of plates in the test as a whole. The plates are widest at the equator (ambitus) of the test and increasingly narrow toward the oral and aboral poles.

The mouth, located on the underside, is surrounded by a peristome, an area of naked integument or flexibly united small plates. The anus generally is placed on the aboral side of the test opposite the mouth, but it may be shifted backward to a posterior position or even to the oral surface. The anus is surrounded by a bare or small-plated periproct. Another part of the test important for orientation and classification is the so-called apical system of 10 special plates at the aboral pole, five so-called ocular plates alternating with five genital plates. One of these genital plates is an interambulacrally placed sieve plate (madreporite) that is a landmark for identifying homologous parts, not only among diverse kinds of fossil and living echinoids but among echinoderms generally. Fossil remains of echinoids include numerous spines not associated with the test that bore them. Even so, the spines are commonly distinctive and useful as paleontological tools (Fig. 8c and Fig. 8d).

 

Orientation

 

Seemingly, there should be little reason for discussing the orientation of echinoids because the downward-directed oral surface clearly is ventral and, at least among irregular echinoids which are characterized by obvious bilateral symmetry, locomotion consistently is in a single direction along the path defined by the plane of this symmetry. If such direction of movement is considered to be forward, the ambulacral ray on this side of the test must be anterior and the opposite interambulacrum is posterior (Fig. 7g). In irregular echinoids, such as the spatangoids, the spines nearly all point backward. In many irregular genera, the mouth is found to have shifted forward and the anus rearward. These observations have led to adoption by specialists of a scheme of numerical designation of the ambulacral and interambulacral rays, introduced by S. L. Lovén (1874) and known as the Lovén system (Fig. 7f). It is applied to fossils as well as living echinoids and to both irregular and regular types. Orientation of the regular echinoids seemingly should not be easy, since they move in any direction with equal ease and without detectable preference; also, except for the madreporite, the test has perfect radial symmetry. Inclusion of the regulars is possible only by use of the off-center location of the madreporite on the aboral surface as a reference point, assuming that relative position is the same in all echinoids. The interambulacrum with the madreporite is identified as number 2 of the Lovén system.

Among crinozoans, which almost certainly embrace the ancestors of echinoids, the posterior interradius is readily and positively identified. If this orientation is applied to echinoids, a discrepancy becomes evident at once, for the adopted anteroposterior plane of echinoids clearly is that coinciding with the left posterior ray of the crinozoans (Fig. 7e and Fig. 7f). Interambulacrum 2 (Lovén), considered as right anterior by echinoid students, is equivalent to the posterior interambulacrum of crinoids, for example. This does not mean that echinoid orientation is wrongly conceived but merely that evolution of these echinoderms has pursued a divergent path of its own, which incidentally duplicates the subordinate plane of bilateral symmetry in some crinozoans (blastoids, heterocrinoids).

 

Habitats and behavior

 

Echinoids can be extremely common from the rocky intertidal down to abyssal ocean depths. The irregular urchins, such as sand dollars, sea biscuits, and heart urchins, are always associated with soft substrates—sand, sandy mud, or mud. Sand dollars and sea biscuits live at the surface of sand or burrow just beneath the surface. Many of these echinoids ingest sand, obtaining sustenance from small organisms, such as bacteria, associated with the sand grains. Heart urchins burrow into the substratum and remain buried, feeding on particulate matter in the mud. The regular urchins are usually associated with hard substrates, typically rock, coral, or rubble, but numerous species may occur on sand or mud in quiet waters. Most of the regular urchins are vegetarians, feeding primarily on algae. Typically, echinoids reproduce by liberating eggs or sperm into the seawater from genital pores on top of the body. There are usually five pores, but in irregular urchins there may be four, three, or two pores. Fertilization of eggs takes place in the seawater, and the developing embryo becomes a planktonic larva. Within a few weeks, the urchin develops on the left side of the larva, breaks away, and sinks to the bottom as a juvenile. Some urchins have a nonfeeding yolky larva, and in others the larval stage is omitted altogether, the young being brooded by the female parent in special chambers.

 

Classification

 

Former taxonomic arrangement of the echinoids recognized two main subclasses, the regular echinoids (Regularia) and irregulars (Irregularia). Present knowledge, based on fossils as well as living forms, shows that this arrangement is artificial. The so-called regulars are a composite assemblage that on the one hand contains several extinct primitive kinds, exclusively Paleozoic, and on the other, advanced forms of modern type, all Mesozoic and Cenozoic, that include the stocks (Diadematacea) from which irregular echinoids were derived. Accordingly, classification was considerably revised (J. W. Durham and R. V. Melville, 1957; A. B. Smith, 1984; and others) so as to take account both of Mortensen's comprehensive work on living echinoids and of evidence from paleontology.

 

 

Ophiocistioids

 

Ophiocistioidea is an aberrant echinozoan group containing five known genera distributed from Lower Ordovician to Middle Devonian. The chief peculiarity of the group is the presence of numerous armlike appendages attached to the oral surface in an ambulacral position. They are interpreted as much-enlarged podia that are covered by abundant minute plates, a character seemingly shared with at least one early holothurian. Small ossicles in the ophiocistioid body wall closely resemble ossicles of holothurians. An early relationship with the holothuroids has been suggested.

 

Holothuroids

 

The sea cucumbers, or Holothuroidea, are a group of echinozoans that must have diverged very early from other echinoderm stocks. They clearly exhibit a fivefold radial symmetry characteristic of the phylum but otherwise differ radically from any other echinoderm assemblage. They are greatly elongated along the oral-aboral axis so as to have a subcylindrical form, and they lie on one of their sides identified as ventral because it is in contact with the substratum (Fig. 5f and Fig. 5g, Fig. 7e). The mouth, surrounded by feeding tentacles, lies at one extremity and the anus at the opposite end. The tentacles can assume a variety of forms, from richly branching (dendritic) to shield-shaped, to featherlike, to digitiform (fingerlike). Sea cucumbers are unique among living echinoderms in possessing an internal madreporite and a single gonad. In a small percentage of species, the body is enclosed in a test of conspicuous plates, but in most the body is flexible, the skeleton consisting of microscopic calcareous plates loosely distributed in the dermis. When the animal dies, decay of the uncalcified tissues liberates the skeletal parts, which almost invariably become scattered about. Less than a dozen whole-animal fossil holothuroids have been described. The fossil remains of the holothuroids usually consist only of discrete microscopic ossicles. Even so, about 200 species of these ossicles have been described from rocks ranging from Devonian to Pleistocene. Most of the fossil forms can be referred to one or the other of the orders of extant holothuroids. Sea cucumbers range from rocky shores to the greatest ocean depths. On the deep-sea floor they can be present in enormous numbers and may comprise 95% of the total weight of animals on the seafloor. Typically sea cucumbers ingest the soft sandy to muddy substrata on which they occur. Such feeding may be nonselective mud-swallowing or selective detritus ingestion. The sea cucumbers with branching tentacles are suspension feeders, extending their sticky tentacles into the water and capturing small drifting organisms or organic particles.

About 20 tropical species are prized as food, especially in Asia, and as a consequence these species are more or less fished out throughout the tropics. Six orders of living sea cucumbers are recognized, based upon characters of the feeding tentacles and skeleton.  See also: Holothuroidea

 

 

Origin and Phylogeny

 

The evolution and relationships of the major groups of echinoderms are under active discussion, and several major issues have yet to be resolved. The extraxial/axial theory (EAT) of B. David and R. Mooi offers a new approach to discussion of skeletal homologies. Echinoderms evolved very rapidly near the beginning of the Paleozoic Era, and Lower Cambrian deposits contain such divergent branches of the phylum as homalozoans Helicoplacoidea, Edrioasteroidea, and Eocrinoidea (Fig. 9). These are primitive types of echinoderms. Cystoids, crinoids, and blastoids, as well as all recognized main groups of asterozoans and echinozoans (except holothurians), appear in Ordovician strata. During the Paleozoic, numerous well-marked evolutionary trends are discernible in nearly all echinoderm groups, including free-moving forms (especially echinoids) as well as crinozoans. Many small classes of echinoderms became extinct during the Paleozoic, and the surviving groups, especially the crinoids, lost many members at the Late Permian mass extinction. All groups of modern echinoderms have their origin in early Paleozoic stocks, and the lines of their phylogeny are mostly indicated by the fossil record. Echinoids predominate in Mesozoic and Cenozoic echinoderms.

David L. Pawson

Raymond C. Moore

J. John Sepkoski, Jr.

 

 

Fig. 9  Phylogeny and diversity range chart for the Paleozoic echinoderms. (After C. R. C. Paul and A. B. Smith, The early radiation and phylogeny of echinoderms, Biol. Rev., 59:443–481, 1984)

 

 

 

 

 

 

 

Bibliography

 

 

  • B. David and R. Mooi, Embryology supports a new theory of skeletal homologies for the phylum Echinodermata, C.R. Acad. Sci. Paris Ser. 3, 319:577–584, 1996
  • L. H. Hyman, The Invertebrates: Echinodermata, vol. 4, 1955
  • D. T. J. Littlewood, Echinoderm class relationships revisited, in Echinoderm Research, ed. by H. Roland et al., A. A. Balkema, Rotterdam, 1995
  • C. G. Messing, Living comatulids, Paleontol. Soc. Pap., 3:3–30, 1997
  • R. Mooi, Not all written in stone: Interdisciplinary syntheses in echinoderm paleontology, Can. J. Zool., 79:1209–1231, 2001
  • C. R. C. Paul and A. B. Smith (eds.), Echinoderm Phylogeny and Evolutionary Biology, 1988
  • A. B. Smith, Echinoderm larvae and phylogeny, Annu. Rev. Ecol. Sys., 28:219–241, 1997
  • A. B. Smith, Echinoid Palaeobiology, 1984
  • alifazeli=egeology.blogfa.com

 

Additional Readings

 

 

  • D. B. Blake, A classification and phylogeny of post-Paleozoic sea stars (Asteroidea: Echinodermata), J. Nat. Hist., 21:481–528, 1987
  • R. S. Boardman, A. H. Cheetham, and A. J. Rowell (eds.), Fossil Invertebrates, 1987
  • R. A. Boolootian, Physiology of Echinodermata, 1966
  • T. W. Broadhead and J. A. Waters, Echinoderms: Notes for a Short Course, 1980
  • J. W. Durham and K. E. Caster, Helicoplacoidea, a new class of echinoderms, Science, 140:820–822, 1963
  • B. N. Haugh and B. M. Bell, Fossilized viscera in primitive echinoderms, Science, 209:653–657, 1980
  • R. C. Moore (ed.), Treatise on Invertebrate Paleontology, pts. S, T, and U, 1966–1967
  • C. R. C. Paul and A. B. Smith, The early radiation and phylogeny of echinoderms, Biol. Rev., 59:443–481, 1984
  • Tree of Life Web Project
  • University of California, Berkeley, Museum of Paleontology
  • alifazeli=egeology.blogfa.com