River

A natural, fresh-water surface stream that has considerable volume compared with its smaller tributaries. The tributaries are known as brooks, creeks, branches, or forks. Rivers are usually the main stems and larger tributaries of the drainage systems that convey surface runoff from the land. Rivers flow from headwater areas of small tributaries to their mouths, where they may discharge into the ocean, a major lake, or a desert basin.

Rivers flowing to the ocean drain about 68% of the Earth's land surface. The remainder of the land either is covered by ice or drains to closed basins (common in desert regions). Regions draining to the sea are termed exoreic, while those draining to interior closed basins are endoreic. Areic regions are those which lack surface streams because of low rainfall or lithoogic conditions.

Sixteen of the largest rivers  account for nearly half of the total world river flow of water. The Amazon River alone carries nearly 20% of all the water annually discharged by the world's rivers. Rivers also carry large loads of sediment. The total sediment load for all the world's rivers averages about 22 × 109 tons (20 × 109 metric tons) brought to the sea each year. Sediment loads for individual rivers vary considerably. The Yellow River of northern China is the most prolific transporter of sediment. Draining an agricultural region of easily eroded loess, this river averages about 2 × 109 tons (1.8 × 109 metric tons) of sediment per year, one-tenth of the world average. See also: Depositional systems and environments; Loess

 

River floods

 

River discharge varies over a broad range, depending on many climatic and geologic factors. The low flows of the river influence water supply and navigation. The high flows are a concern as threats to life and property. However, floods are also beneficial. Indeed, the ancient Egyptian civilization was dependent upon the Nile River floods to provide new soil and moisture for crops.

Floods are a natural consequence of the spectrum of discharges exhibited by a river. Rivers in humid temperate regions often exhibit less variable flood behavior than rivers in semiarid regions of rugged terrain. Floods in the humid regions tend to occur on average once each year. Rarer, larger floods are often no more than one or two times the magnitude of more common annual floods. The semiarid floods, however, are usually very small for common events, such as the average annual flood. However, rare, high-magnitude floods may be catastrophic.

The greatest floods in the geologic record occurred during the Pleistocene about 13,000 years ago in the northwestern United States. Lake Missoula, an ice-dammed lake in western Montana, released several catastrophic floods across the Channeled Scabland region of eastern Washington. The largest of these floods discharged as much as 20 × 106 ft3 (570,000 m3) of water per second. Flow velocities in the Scabland channelways ranged from 33 to 100 ft/s (10 to 30 m/s) for water 100–330 ft (30–100 m) deep. These phenomenal floods created a bizarre landscape of anastomosing channels, abandoned cataracts, streamlined hills, and immense gravel bars. So much water entered the preflood river valleys that they filled to overflowing, and floodwater scoured the divide areas between the valleys.

The Missoula floods were certainly among the most spectacular fluvial phenomena of all time. However, it should be remembered that most rivers do their work very slowly. Rivers are mainly transport agents, removing debris produced by the prolonged action of rainsplash, frost action, and mass movement. The many smaller floods probably accomplish much more of this work of transport than the rare large flood.

 

 

Fig. 1  Typical slope angles and associated drainage patterns forming on relatively homogenous planar beds: (a) surface gradient 1%, dendritic; (b) surface gradient 3%, subparallel; (c) surface gradient 5%, parallel; and (d) surface gradient 5%, pinnate. Arrows indicate direction of flow. (After L. F. Phillips and S. A. Schumm, Effects of regional slope on drainage networks. Geology, 15:813–816, 1987)

 

 

 

 

 

 

Floods are but one attribute of rivers that affect human society. Means of counteracting the vagaries of river flow have concerned engineers for centuries. In modern times many of the world's rivers are managed to conserve the natural flow for release at times required by human activity, to confine flood flows to the channel and to planned areas of floodwater storage, and to maintain water quality at optimum levels. See also: Floodplain; River engineering

 

 

Fig. 2  Diagrams of broad categories of structurally and topographically controlled drainage pattern forms. (a) Radial. (b) Centripetal. (c) Deranged. (d) Dendritic. (e) Trellis. (f) Rectangular. (g) Annular. The dendritic drainage (d) shows the pattern that evolves at the deranged pattern (c) location after sufficient time has passed for erosion of the divides between ponds and formation of a connected channel network. Broken outlines in d show old pond locations in the deranged pattern (c). (After A. D. Howard, Drainage analysis in geologic interpretation: A summation, Amer. Ass. Petrol. Geol. Bull., 51:2246–2259, 1967)

 

 

 

 

 

 

 

Geologic history

 

Some rivers possess a long heritage related to their location along relatively stable continental cratons or their correspondence to structural lows, such as rift valleys. More commonly, rivers have been disrupted through geologic time by the Earth's active tectonic and erosional processes. The most recent disruptions were caused by the glaciations of the Pleistocene. Many rivers, like the Mississippi, became heavily loaded with coarse glacial debris delivered to their headwaters by glaciers. Since the last glacial maximum about 18,000 years ago, most of the world's rivers have adjusted their channel sizes, patterns, and gradients to the new environmental conditions of postglacial time.

In tropical regions the effects of glaciation were indirect. During full-glacial episodes of the Pleistocene, tropical areas of the Amazon and Congo river basins experienced relative aridity. Forests were replaced by savanna and grassland. The greater erosion rates on the land contributed large amounts of coarse sediment to the rivers. Today these regions have returned to their high-rainfall condition. The rivers receive relatively little sediment from interfluves that are stabilized by a dense forest cover. However, human exploitation of the tropical forests seems to be effectively returning the landscape to its glacial condition. This will undoubtedly induce profound changes in many tropical rivers.

Victor R. Baker

 

Stream pattern analysis

 

The patterns of intersecting stream channels provide valuable information about the geology, topography, climate, and hydrology of the region, and about some of the ways in which humans have altered the land surface. The alignment of the streams (for example, branched, rectangular, or parallel) is controlled by bedrock type, topography, and the locations of faults, folds, and joint patterns. The density of the network (that is, how closely spaced the channels are) is controlled by the climate, vegetation, age, permeability, and slope of the surface. Stream patterns are thus a product of the physical geography of a region and provide valuable clues to that geography.

Geologists and geographers have long used stream patterns for landscape analysis. An interesting application of pattern analysis is in extraterrestrial studies; scientists have used stream patterns to identify surficial processes on planets where on-site collection of data is impossible.

 

Form, topography, and geology

 

The general form of stream patterns reflects the underlying topography and geology of a region. Dendritic, or branchlike, drainage (Fig. 1a) is the most commonly occurring pattern; it indicates a lack of strong structural controls (that is, faults, joints, or folds) or complex topography. Dendritic patterns thus commonly occur on relatively horizontal sediments or beveled plains of any rock type. Large drainage networks such as the Mississippi River almost always display dendritic patterns, with other patterns occurring at smaller area scales.

If there are no structural controls or significant variations in rock type and the surface gradient is increased to 3% (that is, a rise of 3 m in 100 m of horizontal distance), the dendritic pattern typically assumes a subparallel pattern (Fig. 1b). At slopes of 5% and higher on planar surfaces, the subparallel pattern usually goes through a transition to a parallel pattern (Fig. 1c) on most rock surfaces, or a pinnate pattern on silts and clays (Fig. 1d).

The shape of the topography as well as the gradient also plays a role in controlling the form of drainage patterns. Volcanoes create radial drainage patterns (Fig. 2a). Topographic lows, such as occur in the closed basins of Nevada, create the centripetal pattern shown in Fig. 2b. The hummocky terrain of permafrost areas, regions of limestone solution, and recently deposited materials from glaciers, volcanic explosions, and slides creates a deranged pattern, which consists of many ponds and unconnected tributaries (Fig. 2c). Deranged patterns may evolve to become dendritic as streams erode the divides between ponds and eventually form an interconnected network of tributaries (Fig. 2d).

Structural controls can also override the natural tendency for drainages to assume a dendritic form, or a parallel form on slopes with gradients greater than 5%. For example, parallel drainages can occur on slopes of less than 5% in areas such as the south shore of Lake Superior, where ancient glacial grooves restrict flow to parallel channels. Trellis patterns (Fig. 2e) generally indicate parallel fractures or parallel dipping rock beds (for example, old beaches that form resistant sandstone), which create long reaches of parallel streams with smaller tributaries to either side. The rectangular pattern shown in Fig. 2f reflects an underlying structure or joints or faults at right angles. Annular patterns occur in areas where the rocks have been bent to form domes and basins (Fig. 2g).

 

Pattern density

 

The various stream patterns can occur at different densities; in other words, channels may range from being closely to widely spaced. Density can be controlled by climate, vegetation, bedrock and soil permeability and strength, slope and shape of surface, and the age of a surface and stream. In turn, human disruption of the landscape can affect all these factors at a variety of scales, from a garbage dump to a river basin.

The evaluation of controls on channel density is important because channel density provides key clues to the physical geography of drainage basins. Furthermore, erosion and flash floods are controlled by drainage density, because more channels mean more runoff and excavation of sediment. Drainage densities therefore have been used by hydrologists to estimate mean annual flows, annual flood sizes, low flows due to ground-water discharge into streams, and sediment yields. Finally, by understanding the controls on drainage density, engineers can design mine tailing piles, landfills, and other artificial landscapes that help maintain drainage densities that reduce erosion and flash floods. See also: Ground-water hydrology; Hydrology

 

 

Fig. 3  Drainage pattern evolution from (a) Initiation as a deranged pattern through (b)–(d) maximum channel development in a dendritic pattern to (e, f) erosional lowering of the basin and loss of channels from the dendritic pattern. (After W. S. Glock, The development of drainage systems: A synoptic view, Geog. Rev., 21:475–482, 1931)

 

 

 

 

 

 

 

Climate and vegetation

 

Drainage density is most strongly controlled by the intensity of precipitation (the amount of precipitation falling per unit time) at regional scales; other factors generally play a role at local scales. The widest variation in drainage densities occurs in semiarid climates, where local factors often override climatic controls.

Despite the impact of local factors, climate-driven factors generally cause densities to be greatest in semiarid areas such as the western Great Plains the United States, where occasional, intense thunderstorm activity coupled with sparse vegetation cover promotes erosion and the formation of many channels. Densities typically decrease in more arid climates because of the absence of rainfall and runoff. Densities also typically decrease in more humid climates, probably because of (1) increased vegetation, which holds soil in place and reduces erosion, and (2) increased soil cover, which acts in a spongelike manner to absorb and store water, thus reducing the surface runoff that erodes channels.

 

Rock type and soil permeability

 

Surfaces possessing high permeability, such as sands or loose volcanic debris, generally produce low stream densities, because precipitation can soak into the surface rather than generating runoff and erosion. Similarly, surfaces such as clays or silts that have low permeability produce high drainage densities, because water cannot sink into the surface, and so runs off and erodes channels. Badlands, which are barren, heavily eroded and dissected landscapes, almost invariably consist of shales or silts that cannot absorb precipitation. On occasion, however, this relationship can be confusing. Granites, for example, are impermeable to water, but are also sufficiently strong to resist extensive erosion and channel formation. In addition, the soils that form from granites are very porous and can absorb significant quantities of rainfall.

 

Age of the surface

 

The older the surface, the more time has been available for erosion and network formation. Thus, if there are identical surfaces that have experienced identical climates, the surface will progress through stages of little erosion, tributary development and high drainage density, and finally reduction in density as erosion reduces lower portions of the basin to a relatively flat plane (Fig. 3). This process may be repeated if the basin is uplifted or the base level (for example, sea level or the level of a reservoir) drops, both events starting a new cycle of erosion.

At the scale of small areas (for example, one hillside) in soft bedrock or soils, the drainage density may also change on a seasonal basis. During the cold or dry season, channels may be destroyed as frost action loosens dry sediment that fills in the channel, while during the wet season, channels are reestablished by runoff.

 

Slope and shape of the surface

 

If all other factors are equal, drainage densities increase with gradient up to a material-dependent threshold value. Densities increase because steeper slopes have less soil cover to absorb rain, and runoff flows more quickly and has more erosive power on steeper gradients. At lower gradients, upwardly convex slopes tend to produce slightly lower drainage densities than planar or concave slopes, but this difference in densities disappears as gradients increase to the threshold value.

W. Andrew Marcus

 

 

Bibliography

 

 

  • E. Derbyshire (ed.), Geomorphology and Climate, 1976
  • W. L. Graf, Fluvial Processes in Dryland Rivers, 1988
  • L. Leopold, M. G. Wolman, and J. P. Miller, Fluvial Processes in Geomorphology, 1995
  • L. F. Phillips and S. A. Schumm, Effects of regional slope on drainage networks, Geology, 15:813–816, 1987
  • S. A. Schumm, The Fluvial System, 1977
  • S. A. Schumm, River Morphology, 1982
  • S. A. Schumm, M. P. Mosley, and W. E. Weaver, Experimental Fluvial Geomorphology, 1987
  • M. M. Smart et al. (eds.), Ecological Perspectives of the Upper Mississippi River, 1986
  • B. A. Whitton (ed.), Ecology of European Rivers, 1989
  • alifazeli=egeology.blogfa.com